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Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA 

Received 18 August 1987 

Abstract. We show that half-range completeness and half-range orthogonality relations 
hold for the stationary one-dimensional Fokker-Planck transport problem for some veloc- 
ity-dependent external forces and general boundary conditions. 

In a recent paper, Marshall and Watson (1987) obtained an analytic solution of the 
albedo and Milne problems for the stationary one-dimensional Fokker-Planck equation 
with constant force term. The problem is of interest for chemical kinetics, coagulation 
studies and, in general, for the computation of first-passage times in any Brownian 
(Ornstein-Uhlenbeck) process. Apparently, it was first considered by Wang and 
Uhlenbeck (1945) who proposed, however, only heuristic methods and approximate 
solutions. More elaborate and accurate numerical calculations have been recently 
performed by Burschka and Titulaer (1982), Mayya and Sahni (1983) and Selinger 
and Titulaer (1984). An extensive and virtuoso analytic study of the Fokker-Planck 
equation by using methods from the theory of special functions has been carried out 
by Pagani (1970). Recently, Marshall and Watson (1985) and Dita (1985) obtained 
explicit solutions to the albedo and Milne problems for the Fokker-Planck equation 
by exploiting specific properties of the Weber functions associated with the respective 
problems. Finally, an approach to solving the stationary Fokker-Planck equation, 
based on using the Green function method for partial differential equations, has been 
furthered by Chandrasekhar (1943), Weber (1951), Menon er a1 (1986), Marshall and 
Watson (1987) and Dita (1987). 

Almost a decade ago, it became clear that the stationary one-dimensional Fokker- 
Planck equation falls into the category of indefinite (backward-forward) Sturm- 
Liouville transport problems and that special methods of functional analysis and 
operator theory as outlined by Baouendi and Grisvard (1968) and Beah (1977, 1979, 
1981) may prove more appropriate and more powerful for an abstract treatment. 
Following this programme, half-range completeness results have been proved by Beals 
and Protopopescu (1983, 1984) for the Fokker-Planck equation itself and by Beals 
(1985) for general indefinite Sturm-Liouville operators. Constructive representations 
of solutions by two equivalent methods, namely, direct eigenfunction expansion and 
Wiener-Hopf factorisation, have been obtained by Klaus er a1 (1985, 1987). A state 
of the art of the abstract theory for indefinite Sturm-Liouville transport problems, 
together with several typical examples, can be found in the recent monograph by 
Greenberg er a1 (1987, ch 10). 

The analytic solutions of the albedo and Milne problem for the Fokker-Planck 
equation with constant external force, reported by Marshall and Watson (1985, 1987), 
were found under the assumption that the half-range completeness established by Beals 
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and Protopopescu (1983, 1984) in the force-free case is valid also for a non-zero 
external force. Accordingly, the solution is developed in an infinite set of independent 
vectors, yet the coefficients of the development contain themselves infinite sums that 
are difficult to compute and eventually are amenable only to approximate results. 

Relying on several observations, we present here a generalisation and simplification 
of the results of Marhsall and Watson (1985, 1987) in the following sense. 

( i )  We shall show that the assumed half-range completeness is indeed valid in the 
presence of an external force that, moreover, does not need to be restricted to a constant. 

(ii) We shall include not only the Milne and albedo problems, but a wide range 
of transport problems involving general partially reflecting and partially absorbing 
boundary conditions. 

( i i i )  We shall derive a half-range orthogonality relation and we shall apply it to 
the Fokker-Planck problem with constant external force. This will be done by using 
a special decomposition of the original indefinite Sturm-Liouville problem into a 
couple of definite Sturm-Liouville problems. 

Specifically, we shall consider the stationary one-dimensional Fokker-Planck 
equation with force term 

a 9  a 2 9  a 9  
ax av2 av 

U-=-+ ( u + 2 a ( u ) )  -+* 

for the one-particle distribution function 9(x ,  U )  depending on the position x, x > 0, 
and on the velocity U, U E (-co,oo). Here, the (non-constant) external force per unit 
mass is 2a ( U). From the physical viewpoint, much greater interest attaches to the case 
of a force field, for which a is (also) a function of x (see, for instance, Duck et a1 
(1986)). However, when the stationary equation (1) is considered, as in the following, 
as a backward-forward evolution problem with x playing the role of evolution param- 
eter, only forces depending on U alone can be included in the treatment. We shall 
specify the boundary conditions ( BC) at x = 0 and x + CO as is usually done in kinetic 
or transport theory, namely: 

*(O, U )  = @(U) + ( R . m ) ( O ,  U )  v > o  ( 2 )  

9(x ,  U )  = o( 1) or O(X") n = 0,1, . . . for x -, CO. (3) 

In BC (3), that specifies the distribution at x = 0 only for a half-range of velocities, 
J is the inversion operator, J ~ ( u ) = ~ ( - u ) ,  and R is the boundary operator. The 
action of R depends on the surface scattering law, e.g., R = 0 for a purely absorbing 
boundary, R = I (the identity operator), for a specularly reflecting boundary, etc. In  
general, the BC at infinity may or may not be compatible with the rest of the problem. 
Accordingly, the problem may sometimes have no solution while sometimes it may 
have multiple solutions. For a detailed discussion of this point we refer the interested 
reader to Greenberg er a1 (1987, ch 3,4). In the following, we shall take BC (3) in the 
form Y(x, U) f c for x + a, where the constant c has to be determined. Other growth 
conditions at infinity can be treated likewise. 

First, we want to show that the half-range completeness result covers the problem 
(1)-(3) with rather general a ( u )  and R = 0. 

To this aim, we shall perform the transformation 
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Inserting (4) into (1)-(3) and separating the variables in the form 

$(x, U )  = e-*"$(u) ( 5 )  

we can cast (1)-(3) in the standard indefinite Sturm-Liouville form 

where 

w ( u )  = U exp( -$u2-2 l" .(U) du) 

p(u)-exp(  -$u2-2 l" a ( u )  du)  

(9) 

+ ( u ) = @ ( u )  exp( -fu2-2 1' .(U) du). (12) 

As in the original formulation (1)-(3), the important feature of the problem is that 
the function w ( u )  changes sign on (-00, a), namely at U = 0. One sign change is 
usually the most common situation, but several sign changes can be treated likewise 
(Greenberg et a1 1987, ch 10). 

The transformation (4) imposes some requirements on the external force: a (  U )  
must be locally continuously differentiable such that q ( u )  be continuous on R. If 
a( U )  < 0, an extra growth condition has to be imposed for large U, namely, there exists 
6 > 0, C > 0 such that 

[.(U)["- C l f p  101 + 03. (13) 
This condition ensures that w ( u ) ,  p ( u ) ,  q ( u )  remain bounded for all U. Moreover, 
.(U) must be such that the spectrum of the operator - (d/du)p(u)d/du+q(u)  be 
contained in (0) U [ E ,  a); E > 0. 

Once the problem is set up in the standard form (6), its solvability as well as the 
half-range completeness property for R = 0 follows directly from Greenberg et a1 (1987, 
ch 10, theorem 1.5, lemma 2.1 and corollary 2.2). 

The extension to R # 0, R S 1 is achieved via a fixed point argument, in the same 
spirit as that in which it was applied to time-dependent transport theory by Beals and 
Protopopescu (1987). Let us write the solution at x = 0 of the problem (6)-(8) with 
R = 0 in the usual notation: 

$(O, U) = (E+)(O, U )  (14) 
where +(U), U > 0, is the given surface term wherefrom the complete distribution at 
x = 0, $(O, U), all U, is uniquely constructed by the action of the albedo operator E. 
We recall that the complete knowledge of $ at x = 0 enables one to construct immedi- 
ately $ at any x > 0. For the general problem (6)-(8), with R + 0, we look for a solution 

$(O, U) = (E+*)(O, U )  (15) 
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where d*( U), u > 0, is the new surface source term to be determined uniquely. Like 
C#J( U), +*(U) is defined only for u > 0 and, when considered as a function of R, will 
be taken identically zero for u < O .  

Inserting ( 1 5 )  into ( 7 )  and taking into account that Eq5 solves ( 7 )  with R =0,  we 
obtain 

(16) +(O,  U > 0) = q5*(u) = (RJEq5*)(0, u > O ) +  q5(u).  

Taking into account that 

( E d * ) ( u < O ) =  ( E C $ * ) ( u ) - + * ( u ) = ( E  -1)q5*(u) (17) 

we obtain finally 

I$* = R J ( E  - l)f#J*+q5 (18)  

and 

q5* = [ 1 + RJ( 1 - E )-j-'C$. (19) 

Since 11 1 - E )I < 1 and .l is an involution ( l l J l l =  l ) ,  the invertibility of [ 1 + RJ( 1 - E ) ]  
is ensured for any boundary reflection operators with 11 R 1 1  1. This proves the solvabil- 
ity of the stationary problem (6)-(8) for any .(U) and R satisfying the conditions 
discussed above and, implicitly, the existence of a half-range completeness result. In  
general, the half-range complete functions are not known special functions; however, 
for .(U) = cy =constant, these functions are the Weber functions (see, e.g., Olver 1974). 

The set of orthonormal half-range complete Weber functions is specified by BC for 
both x and u as will be seen in the following. The idea is to reduce the indefinite 
eigenvalue problem, as considered on (-00, a), to a pair of two dejnite eigenvalue 
problems considered on (-CO, 0) and (0, CO), respectively. In order to achieve this 
decomposition, one has to add a supplementary BC at u = 0. Since it is not imposed 
by the physical requirements of the original problem, this supplementary BC is, to a 
large extent, arbitrary and will be chosen such that the two reduced Sturm-Liouville 
operators obtained from the original operator be positive and self-adjoint in 
L>((-CO, 0); Iw(u)l du) and L2((O; CO); w(u) du), respectively. Thus, they possess com- 
plete orthonormal systems of eigenfunctions in the respective spaces (Morse and 
Feshbach 1953). 

We shall achieve the reduction of the indefinite Sturm-Liouville problem (6)-(8) 
by imposing at u = 0 a separated BC of Neumann-Dirichlet type: 

(20) 

This type of reduction has been previously carried out and applied by Klaus er a1 
(1985, 1987) to the Wiener-Hopf factorisation of general Sturm-Liouville transport 
problems with any finite number of sign changes. This reduction also appears, although 
not in explicit terms, in Marshall and Watson (1985, appendix l ) ,  who even wrote a 
half-range orthogonality relation corresponding to the case p = r r / 2  in (20). They did 
not, however, use it in their work so they only obtained the solution in the form of 
infinite sums as given by the traditional, but less convenient, set { D,( U); n = 0, 1,2, . . .} 
which is half-range complete, but not half-range orthogonal. Dita (1985, 1986) used 
the decomposition independently and realised that one can thus obtain the explicit 
solution of the albedo and Milne problems for the force-free Fokker-Planck equation 
via expansions in eigenfunctions that are half-range complete and half-range 
orthogonal. Dita took /3 = 0 in (20). The existence of a half-range orthogonality relation 

+(O)  cos /3 -p(O)+'(O) sin P = 0 P E [O, TI. 
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is important for concrete applications seeking efficient and  accurate numerical results, 
since it yields the coefficients of the eigenfunction expansion via simple quadratures. 
We shall include here the calculation for the Fokker-Planck equation with constant 
force as another application of interest. We stress that the method is general, but its 
usefulness for applications depends on the explicit knowledge of the orthonormal 
complete set, which is not guaranteed for more general forces ( Y ( u ) .  

For the Fokker-Planck equation with a (  U) = a = constant, the separation of vari- 
ables of the form 

+(U) (21) +(x, U) = e - A X  , - (u ’ /4+ma)  

leads to the equation 

4 ” ( ~ ) + ( ; -  a*+ u(A - a )  - ~ U ’ ) + ( U )  = O  

which is satisfied by the Weber function DA2-2uA ( U - 2( A - a ) )  (Morse and Feshbach 
1953). This function tends to zero when U tends to infinity; the other independent 
solution, D - A > + 2 u A - , ( i [ ~  -2(A - a ) ] ) ,  is not acceptable because of its oscillatory 
behaviour at infinity. The set of eigenvalues and the corresponding set of complete 
orthonormal eigenfunctions are determined by imposing the BC (20) at U = 0. 

For instance, if we take p = 0, then the BC (20) applied to the acceptable solution 
of (22) are 

D ~ z - I , ~ A ( - ~ ( A  -a ) )=O.  (23) 

The solutions of (23) determine an infinite denumerable set of real distinct eigenvalues 
A, for the original Sturm-Liouville problem. The corresponding eigenfunctions, 
{ 4 , , ( ~ ;  A,)} where +,,( U; A,)  = DA;-ZuA,,(u -2(A, -a)) satisfy the usual orthogonality 
relation satisfied by a Sturm-Liouville set: 

J1: h 1 ( u ) 4 m ( ~ ) 4 n ( u )  d u =  U+m(U)dn(U) dv=6nm. (24) 

If we compare the set {+,,(U; A,)} with the set {D,(2(n -a2)”*- U)}, n EZ,, used by 
Marshall and Watson (1987), we see that the eigenvalues A, are more difficult to 
compute, but the eigenfunctions 4 , ( u ;  A,,) = DA;L2rrA,,( U -2(A,, - a ) )  satisfy simpler 
relations than d o  the eigenfunctions D,,(2(n - ( Y ~ ) ’ / ~ -  U), namely the half-range 
orthogonality relation (24) that yields readily the expansion coefficients. We note that 
the way to achieve orthogonality by passing from { n E 2,; Dn(2( n - - U)} to 
{A,,; DA;-*,A,,(U -2(A,, - a ) ) }  differs from the classical method of the Chandrasekhar 
weight function used in neutron transport and gas dynamics. We note also that the 
possibility of the half-range orthogonality being realised by such an  operatorial transfor- 
mation aimed at changing the basis, and not by a simple multiplicative weight function 
applied to the old (full-range) basis, had been considered by Beals and Protopopescu 
(19841, but no definitive solution was found at that time. 

In conclusion, we have shown in this letter how to generalise some recent results 
of Marshall and  Watson (1987) concerning the stationary problem for the one- 
dimensional Fokker-Planck equation with external force term. Relying on the results 
of the abstract theory for kinetic equations, we were able to include more general force 
terms and  boundary conditions. Moreover, by transforming the indefinite Sturm- 
Liouville problem into a pair of definite ones, we could construct a set of eigenfunctions 
that are both half-range complete and half-range orthogonal and we exemplified the 
construction for the constant-force case. 

1: 
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